Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 252: 126485, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32222516

RESUMO

Degradation of benzenesulfonic acid (BSA), the simplest aromatic sulfonic acid with extreme industrial importantance, by sonochemically generated hydroxyl radical (OH) have been thoroughly investigated. A reasonable reduction (∼50%) in the total organic carbon (TOC) was achieved only after prolonged irradiation (∼275 min, 350 kHz) of ultrasound, although a short irradiation of less than an hour is enough to degrade significant amount of BSA. The degradation efficiency of ultrasound has been reduced in lower and extremely higher frequencies, and upon increasing the pH. An irregular, but continuous, release of sulfate ions was also observed. Further, the release of protons upon the oxidation of BSA consistently reduces the experimental pH to nearly 2. High resolution mass spectrometric (HRMS) analyses reveals the formation of a number of aromatic intermediates, including three mono (Ia-c) and two di (IIa&b) hydroxylated BSA derivatives as the key products in the initial stages of the reaction. Pulse radiolysis studies revealed the generation of hydroxycyclohexadienyl-type radicals, characterized by absorption bands at 320 nm (k2 = (7.16 ± 0.04) × 109 M-1 s-1) and 380 nm, as the immediate intermediates of the reaction. The mechanism(s) leading to the degradation of BSA under sonolytic irradiation conditions along with the effect of various factors, such as the ultrasound frequency and reaction pH, have been explained in detail. The valuable mechanistic aspects obtained from our pulse radiolysis and HRMS studies are essential for the proper implementation of sonochemical techniques into real water purification process and, thus, receives extreme environmental relevance.


Assuntos
Benzenossulfonatos/química , Poluentes Químicos da Água/química , Radical Hidroxila/química , Íons/química , Cinética , Espectrometria de Massas , Oxirredução , Sonicação , Água/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
2.
Environ Sci Pollut Res Int ; 24(31): 24533-24544, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28905281

RESUMO

The heterogeneous catalytic degradation of a model azo dye, acid red 1 (AR1), initiated by zero valent iron nanoparticles (ZVINP), and its synergic effect with ultrasound (US) have been investigated in the present study. The treatment of AR1 using ZVINP at pH 3 showed maximum efficiency in terms of colour removal (53.0%) and mineralization (48.5% TOC reduction) after 25 min of reaction. However, the coupling of this system with US showed an enhanced efficiency against the decolourization and mineralization of AR1. More than 95% colour removal was achieved within 5 min in the case of US/ZVINP system. Around 55% TOC reduction suggests the conversion of the parent molecules in to aromatic transformed products, and it is further supported by LC-Q-TOF analysis. The remarkably higher efficiency in the coupled system is attributed to the synergic effect of ZVINPs and ultrasound. The highest degradation rates observed at highly acidic (pH 3) and alkaline pH (pH 9) suggests that different mechanisms are operating at both pH. The products identified gave some insight into the mechanism. The ZVINPs prepared in the present study was easily recoverable (and reusable) and hence may be considered as an effective replacement for the conventional Fenton's reagent.


Assuntos
Nanopartículas/química , Rodaminas/química , Ondas Ultrassônicas , Compostos Azo/química , Catálise , Cor , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...